Wojciech Dobiński

Articles

Ice classification as a basis for determining the borders and area of Antarctica

Wojciech Dobiński

Przegląd Geograficzny (2016) tom 88, zeszyt 3, pp. 339-351 | Full text
doi: https://doi.org/10.7163/PrzG.2016.3.3

Further information

Abstract Antarctica is commonly perceived to be a continent, and so must first and foremost have a clearly defined area and borders, if it is to be called a land. The area of each such land is determined by its borders. The question of the border between land and sea has everywhere raised certain doubts, but nowhere are these as severe as in the case of the Antarctic. Being entirely covered with ice creeping down to the ocean, Antarctica has a boundary that takes the form of an ice barrier along 95% of its length, with the ice in question entering the sea to a greater or lesser extent. There is thus no unified position as to where the borders of Antarctica should be taken to lie. Rather three different positions maintain that: 1. the border is the limit of the Antarctic ice sheet bedrock protruding above the water surface – and hence an entity particularly hard to determine given the aforementioned high level of coverage by a continental glacier; 2. the boundary of the Antarctic continent can be defined as a “grounding line”, i.e. a line where the creeping ice sheet as a whole rests on the sea-bed, and is thus in no part supported by water, i.e. floating. 3. the boundary of the continent is a land border together with the ice-barrier of glaciers ending in the sea, in particular ice shelves (the Antarctic continent is also sometimes taken to include so called “fast ice”, i.e. long-term sea ice frozen to the land or ice shelves and thus remaining at a standstill). Depending on criterion for the border that is adopted, Antarctica’s area can be seen to change markedly (in comparison with other continents). The size is usually calculated at between 13.5 and 14x106km2. However, this is not the end of the problems with defining borders and area in the case of Antarctica. As a continent may be deemed a continuous (in Latin continuus) land, hence the name of continent, it forms part of the lithosphere. However, ice joins other forms of water in being classified as part of the hydrosphere, and this precludes it being recognised as a component of the lithosphere. Antarctica is therefore believed commonly to be called a continent in a manner that has no regard to glaciation. In recent years, an image of the Antarctic bedrock called Bedmap 2 has been prepared on the basis of georadar research. This shows that 5.5x106 km2 of Antarctic bedrock, or 44.7% of the entire area, is located below sea level. This means that only about half of the surface of the continent in the traditional sense can actually be recognised as land, or rather an archipelago similar to the one located in the Canadian Arctic. In nevertheless remains common for ice to be treated as a mineral and as rock in geology. On this basis, its return to the lithosphere has long been postulated, while the lack of such a change in reality has tended to cause considerable disruption in science, to the extent that even an unambiguous determination of whether Antarctica is a continent is not permitted. The concept of the ice-lithosphere is not unknown to science, given that it is commonly present on other celestial bodies of the Solar System. There is no requirement that analogies relating to knowledge in the Earth sciences should be one-way only, with the effect that the analogy based on the principle of uniformitarianism can and should be reversed: it is not the Earth, as something exceptional in space, that should be the point of reference in the understanding of the cosmos, but rather the other planets that should serve as such a reference as the Earth is explored.

Keywords: Antarktyda, granice, lód, kontynenty

Citation

APA: Dobiński, W. (2016). Klasyfikacja lodu jako podstawa do określenia granic i powierzchni Antarktydy. Przegląd Geograficzny, 88(3), 339-351. https://doi.org/10.7163/PrzG.2016.3.3
MLA: Dobiński, Wojciech. "Klasyfikacja lodu jako podstawa do określenia granic i powierzchni Antarktydy". Przegląd Geograficzny, vol. 88, no. 3, 2016, pp. 339-351. https://doi.org/10.7163/PrzG.2016.3.3
Chicago: Dobiński, Wojciech. "Klasyfikacja lodu jako podstawa do określenia granic i powierzchni Antarktydy". Przegląd Geograficzny 88, no. 3 (2016): 339-351. https://doi.org/10.7163/PrzG.2016.3.3
Harvard: Dobiński, W. 2016. "Klasyfikacja lodu jako podstawa do określenia granic i powierzchni Antarktydy". Przegląd Geograficzny, vol. 88, no. 3, pp. 339-351. https://doi.org/10.7163/PrzG.2016.3.3

Permafrost prospecting and geological structure of Mt. Babia Góra in the light of the electroresistivity imaging method

Wojciech Dobiński, Michał Glazer, Barbara Bieta, Maciej J. Mendecki

Przegląd Geograficzny (2016) tom 88, zeszyt 1, pp. 31-51 | Full text
doi: https://doi.org/10.7163/PrzG.2016.1.2

Further information

Abstract

The article reports the results of fieldwork carried out on the peak of Babia Gora to verify a hypothesis regarding the existence of permafrost at this location. The climate and geomorphological evolution of this area suggest that both past and current frost processes play an important role here. Furthermore, not far from this massif – in the Tatra Mts – permafrost was detected at an altitude of ca. 2000 m a.s.l., in an area where mean annual air temperature (MAAT) drops to minus 0.8°C. The MAAT at the summit of Babia Gora is likewise below 0°C. Given that long-term freezing of the massif in the glacial period reached down to considerable depths, the climatic evolution of the massif indicates that permafrost could have lasted through to the present time. In the study area three resistivity profiles were made using the resistivity imaging method. Two of these were 300 m long and one 400 m. The depth of interpretation extends to approx. 90 m below the ground surface in the last case. While the results of the geophysical surveys do not confirm the presence of permafrost in the study area unambiguously, its presence may not be precluded in certain places in the shallow subsurface layer. The permafrost originating in older geological periods and located at greater depth was probably exposed to relatively rapid degradation, given the geological structure of Babia Góra allowing for deep water drainage. Resistivity models shows the geological structure of the research area close to the summit of Babia Góra, but do not resolve the issue of the existence of modern or fossil permafrost. The temperature of the water in springs located close to the summit is almost constant, though, and does not exceed 1°C. This shows that water circulation is a relatively deep one, and the temperature within the massif cannot therefore be higher than this. The existence of permafrost is not therefore precluded, and this might be possible in the form of the cryotic state. The measurements made present only the first approach to the hypothesis regarding the possible existence of permafrost on Babia Góra, and further research applying other, complementary methods may still change views on this subject.

Keywords: permafrost, Babia Góra, inwersyjne obrazowanie oporności

Citation

APA: Dobiński, W., Glazer, M., Bieta, B., & Mendecki, M. (2016). Poszukiwanie wieloletniej zmarzliny i budowa geologiczna Babiej Góry w świetle wyników obrazowania elektrooporowego. Przegląd Geograficzny, 88(1), 31-51. https://doi.org/10.7163/PrzG.2016.1.2
MLA: Dobiński, Wojciech, et al. "Poszukiwanie wieloletniej zmarzliny i budowa geologiczna Babiej Góry w świetle wyników obrazowania elektrooporowego". Przegląd Geograficzny, vol. 88, no. 1, 2016, pp. 31-51. https://doi.org/10.7163/PrzG.2016.1.2
Chicago: Dobiński, Wojciech, Glazer, Michał, Bieta, Barbara, and Mendecki, Maciej J.. "Poszukiwanie wieloletniej zmarzliny i budowa geologiczna Babiej Góry w świetle wyników obrazowania elektrooporowego". Przegląd Geograficzny 88, no. 1 (2016): 31-51. https://doi.org/10.7163/PrzG.2016.1.2
Harvard: Dobiński, W., Glazer, M., Bieta, B., & Mendecki, M. 2016. "Poszukiwanie wieloletniej zmarzliny i budowa geologiczna Babiej Góry w świetle wyników obrazowania elektrooporowego". Przegląd Geograficzny, vol. 88, no. 1, pp. 31-51. https://doi.org/10.7163/PrzG.2016.1.2

Comments on the article “An outline of the history of ground freezing and permafrost research in the Polish Tatra Mountains” by S. Kędzia

Wojciech Dobiński

Przegląd Geograficzny (2015) tom 87, zeszyt 3, pp. 555-558 | Full text
doi: https://doi.org/10.7163/PrzG.2015.3.9

Further information

Abstract This paper offers critical comment as regards the text of the article by S. Kędzia. The main complaints are based on the fact that, in his paper, the said author does not distinguish between seasonal frost and permafrost, identifying a negative average annual temperature as permafrost, and suggesting that the presence of permafrost can be established by methods other than ground temperature measurement within at least two consecutive years, as well as that permafrost could be responsible for the movement of a relict rock glacier.

Keywords: wieloletnia zmarzlina, sezonowe przemarzanie gruntu, Tatry

Citation

APA: Dobiński, W. (2015). Komentarz do artykułu S. Kędzi pt.: Zarys historii badań przemarzania gruntu i wieloletniej zmarzliny w polskiej części Tatr*. Przegląd Geograficzny, 87(3), 555-558. https://doi.org/10.7163/PrzG.2015.3.9
MLA: Dobiński, Wojciech. "Komentarz do artykułu S. Kędzi pt.: Zarys historii badań przemarzania gruntu i wieloletniej zmarzliny w polskiej części Tatr*". Przegląd Geograficzny, vol. 87, no. 3, 2015, pp. 555-558. https://doi.org/10.7163/PrzG.2015.3.9
Chicago: Dobiński, Wojciech. "Komentarz do artykułu S. Kędzi pt.: Zarys historii badań przemarzania gruntu i wieloletniej zmarzliny w polskiej części Tatr*". Przegląd Geograficzny 87, no. 3 (2015): 555-558. https://doi.org/10.7163/PrzG.2015.3.9
Harvard: Dobiński, W. 2015. "Komentarz do artykułu S. Kędzi pt.: Zarys historii badań przemarzania gruntu i wieloletniej zmarzliny w polskiej części Tatr*". Przegląd Geograficzny, vol. 87, no. 3, pp. 555-558. https://doi.org/10.7163/PrzG.2015.3.9